Bidirectional processing ll:

feedforward & feedback networks for
recognition

Focus on feedback computations
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Current Biology

Shipp, S. (2007). Structure and function of the cerebral cortex. CURBIO, 17(12), R443-9. doi:10.1016/j.cub.2007.03.044




Bayesian perspective: two
computational strategies

p(object | image)

Discriminative mechanisms feeforward

e Computational/behavioral speed and accuracy requires
effective diagnostic features to deal with the enormous
variation within a pattern/object category

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing:
from early perception to decision-making. Journal of Cognitive
Neuroscience, 13(4), 454-461

plimage | object) X p (object)*
feedback

Generative mechanisms
e Provide flexibility, generalization

* vecall bayes: p(object | image) « p(image | object) X p(object)

Can feedback help with the local
uncertainty, scalability and
flexibility problems

Fine-scale recognition and segmentation
Unfamiliar objects/appearances
Learning given only a few examples

Bootstrap learning problem:
How to learn when objects aren’t experienced in isolation?

Domain-specific compositional models

Automatic or consciously driven?

The executive metaphor
expertise at various levels of abstraction

local uncertainty,
missing data

Top-down, generative models?

Extraneous data: recognition despite cast shadows
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Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends and tacit assumptions in
vision research (Gorea A, ed), pp 295-304. Cambridge, UK: Cambridge University Press.




Object variations that haven't
been seen before

can recognize as scissors AND

‘t estimate an articulation

o o

object model @ . o
Object variations that haven't been seen before:
parts/features Compositional architectures for representation
v e
Pl B Doesn’t mean that feedback is necessary for
é = recognition (Thorpe et al.)
parts/features "l —— e
é SRipdetals But top-down feedback may be important for
measurements

® achieving high-performance given uncertainty,
noise, clutter

RAHH AR KA e task flexibility

parts, patches, fragments

® |earning new object models

basic logical operation: detect “disjunctions of conjunctions”




Contrast predictive coding with strictly feedforward
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Disambiguation?

Predictive coding: suppress lower-level features that
are consistent with a confident high-level
interpretation. Reduce metabolic costs, signal new
unexplained incoming information.

Analysis-by-synthesis. Bind lower-level information
that might be required for executive tasks, e.g. fine-
grain. : enhance lower-level consistent features and/or
suppress inconsistent ones. Useful for representation
and interpretation of novel patterns? Dealing with
clutter?

perceptual organization reduces
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Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L.
(2002).; Fang, F., Kersten, D., & Murray, S. O. (2008).

...but non-retinotopic voxels are also suppressed (Wit et al., 2012)

Behavioral evidence for top-down reduction of early activity? Use
perceptual adaptation--the psychophysicist’s electrode
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e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.
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Return to the challenge of task flexibility

Humans can not only localize and
recognize object categories, they can

» parse, describe and precisely
segment an image, and lots
more, such as measure
attributes and relations, infer
intent, ...

» rapidly learn new object models
under difficulty segmentation
conditions

Bringing nature to the lab. Callionima moths on the left show disruptive camouflage patterns. The garment in
the middle image replicate images of the woodland background. Texture mapping was used by Brady and
Kersten (2003) to mimic this for the digital embryo on the right. This introduces false positive object
boundaries, and apparent shape from shading cues.

Virtual morphogenesis

Brady, M. J., & Kersten, D. (2003).
Bootstrapped learning of novel objects.
Journal of Vision, 3(6), 413-422.

Brady, M. J., & Kersten, D. (2003).
Bootstrapped learning of novel objects.
Journal of Vision, 3(6), 413-422.




Bootstrapped learning: Learning a
camouflaged object from camouflaged
training images

How do humans acquire prior knowledge of object classes? There is a
target object in “plain view” in this figure. Without training, it is
impossible to detect or draw a line around its boundary.

Opportunistic learning:

Learning a camouflaged object
from uncamouflaged training
images

If an observer has to opportunities to see
colored birds, this could help the
observer to learn about the forms that
birds can take. Then at some future time,
it could use this knowledge to see birds
whose color does not distinguish it from
the background, e.g. a different kind of
bird, or under more difficult viewing
conditions, such as during the night or
fog. This is “opportunistic learning”




First 4 scenes (out of 15) of a motion training movie.

After training, observers were tested on
test images in which the objects were
given new camouflage, and presented
against new backgrounds.

All observers were able to learn
opportunistically, and some were also
able to learn from the camouflaged
training images. This figure shows a
perfect segmentation by an observer
after training.

Flexibility

Limitations to current recognition algorithms as
models of biological/human vision?

How deep?

http://www.pauldebevec.com

; R multiple layers 3D renderin
Hu'mlans generallze fgr beyond emotion/intent muscles of ngt tissyue parametersg Image
training data to novel images/
forms deeper

Insights from computer graphics...

Take a look at faces, materials such as hair and fluids,

To what extent does human visual flexibility, ability and body pose

fo generalize rely on deep generative knowledge?




Message from computer graphics is as deep as you
can given processing limitations

Rendering the Human Face

uncanny valley

https: vel r.nvidia.com/facework:

General message for human visual
neuroscience is “deep, but not too deep”.

“How to cheat and get away with it?”

Faces

See too: Nvidia talk facial expressions

How deep?

3D rendering
parameters

multiple layers

emotion/intent muscles of soft tissue image
deeper
lllumination?
Sources, shadows, inter-reflections,..
imations?
3D shape? 2D shape approximations®
Appearance image

Material, e.g. sub-

. imations?
surface scattering? approximations

deeper

Hair

hair care products have the highest sale
volume of all non-food items in the US




What does it take to
generate realistic hair?

‘Pan’

Sasquatch software trom www.worley.com

Hair can be... Viscous fluids

« wavy, curly, straight, spiky, stiff, buzzed, shaved, parted, neatly-

combed, tamed, long, short, cropped Discrete Viscous Threads

« thick, full, lustrous, bushy, coarse, wiry Mikios Bergou  Columbia University
Basile Audoly UPMC Univ Paris 06 & CNRS
» thin, scraggly, fine, baby-fine, wispy, limp, flat, balding, receding HigoVegE Gl Uiy

Max Wardetzky  Universitat Gottingen

Eitan Grinspun  Columbia University
* black, brunette, brown, chestnut-brown, honey-blond, blond,

golden-blond, ash-blond, auburn, red, strawberry-blond, gray, \
silver, white, salt-and-pepper

» permed, dyed, bleached, highlighted, weaved
* braids, ponytail, pigtails, bun, twist, bob, ringlets, flip, bangs, buzz
« layered, feathered, chopped, gelled, spiked, slicked down

* terminal and vellus




Body pose, actions

Toshev, A., & Szegedy, C. (2013). Deeppose: Human pose estimation via deep neural networks. arXiv Preprint arXiv:1312.4659.

X. Chen and A L. Yuille. Articulated Pose Estimation with Image-Dependent P; on Pairwise Relati NIPS 2014

global
http://astro.temple.edu/~tshipley/ptlt_movies/mlwalk2.mov
http://www.biomotionlab.ca/Demos/BMLwalker.html
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how to get from local to global?

Current inferential models of human visual recognition are not very
“deep” in the sense of relying on inductive biases, generative models
that could allow rapid learning from few samples, the ability to deal
with almost any image (familiar or not).

Need to understand the critical dimensions that avoid the uncanny
valley without computations and representations unlikely to exist in
the brain. L.e. the “right” kind of generative model.

Need to understand how to model statistical regularities in classes of
natural images. Linear methods are inadequate.

Need for compositional models, grammars, e.g. “recognition-by-
components”




