
Bidirectional processing II: 
feedforward & feedback networks for 

recognition
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Bayesian perspective: two 
computational strategies

Discriminative mechanisms 

• Computational/behavioral speed and accuracy requires 
effective diagnostic features to deal with the enormous 
variation within a pattern/object category 

Generative mechanisms 

• Provide flexibility, generalization

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing: 
from early perception to decision-making. Journal of Cognitive 
Neuroscience, 13(4), 454–461.

p(object | image) 
feedforward

p(image | object) X p(object)* 
feedback

* recall bayes:  p(object | image) ∝ p(image | object) X p(object)

Can feedback help with the  local 
uncertainty, scalability and 

flexibility  problems
Fine-scale recognition and segmentation 

Unfamiliar objects/appearances  

Learning given only a few examples 

Bootstrap learning problem: 
How to learn when objects aren’t experienced in isolation? 

Domain-specific compositional models

Automatic or consciously driven? 

The executive metaphor 
expertise at various levels of abstraction

local uncertainty,  
missing data

Top-down, generative models?

Extraneous data: recognition despite cast shadows

Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends and tacit assumptions in 
vision research (Gorea A, ed), pp 295-304. Cambridge, UK: Cambridge University Press.



+
Object variations that haven’t 

been seen before

can recognize as scissors AND 
estimate an articulation

8 D. KERSTEN

states of the lower-level nodes. This is similar to the
gradual loss of positional specificity as one moves
up the ventral stream. The existence of some repre-
sentation of spatial relations even at higher levels is
consistent with behavioral and with functional mag-
netic resonance imaging (fMRI) studies (Kravitz et
al., 2010).

The edges between the di↵erent graph nodes, and
the local conditional probabilities defined over them
(see description of Markov Random Fields, Fig-
ure 6), capture the statistical relations about the
spatial configurations of the baseball player (i.e. the
likely relative positions of the body parts, and which
body parts are likely to occur taking into account
viewpoint and pose changes).
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Figure 4. The AND/OR Graph Model (Zhu, Chen, Lin,
& Yuille, 2010). The Baseball player is an AND of the
head and torso, and left and right legs, but the head is
an OR of straight head and torso or an inclined head and
torso (top left).

Because the AND/OR graph is a probability
model defined over a graph, one can perform infer-
ence to estimate the states of the unknown graph
nodes, conditioned on the values of a subset of the
nodes by message passing algorithms. This leads to
a bottom-up and top-down strategy which is driven
by input from the images (i.e. the model is condi-
tioned on the states of the bottom-levels). Hypothe-
ses are computed at the lower-levels and propagated
up the hierarchy to form hypotheses for larger parts
of the object and top-down processing is used to re-

move the “false” hypotheses at lower levels. Intu-
itively there will be many possible hypotheses for
the small sub-parts of the object, since small fea-
tures and parts of the object are easy to confuse with
the background clutter. Compositions of sub-parts,
however, are less likely to occur by chance in the
background. So as the algorithm passes messages
up the hierarchy it will tend to converge to the cor-
rect solution. Convergence speed depends on the
reliability of the initial measurements.

One can also run the model in an atten-
tional/priming mode where some of the top-level
nodes are fixed (or conditioned on) – i.e. the sys-
tem is primed to see a baseball player but does not
know exactly where it is – while the bottom level
nodes are also specified by the data (if we condition
only on the top-level nodes, allowing no input from
the image, then this is like imagining, or dreaming,
a baseball player). This requires passing messages
both top-down (from the primed nodes) and bottom-
up (from the input nodes).

Learning hierarchical structure in natural
images

While the brain clearly needs to be adaptive to
image structures relevant for successful behaviors,
the complexity of natural images suggests that part
of the brain’s solution involves the discovery of hi-
erarchical structure in images themselves. A prop-
erty of natural images is that intensities are to a first
approximation, piece-wise smooth, so that one can
predict pixel intensities from nearby pixels. Barlow
argued that if image content is recoded to remove
these and other higher-order statistical dependen-
cies (through sparse coding), it becomes easier to
compute useful information with probabilities (Bar-
low, 2001). Then one can detect “suspicious coinci-
dences” (is p(s1, s2) >> p(s1)p(s2) ?), and learn to
predict them so they become unsuspicious.

The principle of detecting suspicious coinci-
dences provides the means to build up a hierarchical
model of features, parts, objects and scenes (Zhu et
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discounting relationship details

basic logical operation: detect “disjunctions of conjunctions”

Object variations that haven’t been seen before: 
Compositional architectures for representation

Doesn’t mean that feedback is necessary for 
recognition (Thorpe et al.) 

But top-down feedback may be important for 

• achieving high-performance given uncertainty, 
noise, clutter 

• task flexibility 

• learning new object models



Contrast predictive coding with strictly feedforward

Analysis-by-synthesis. Bind lower-level information 
that might be required for executive tasks, e.g. fine-
grain. : enhance lower-level consistent features and/or 
suppress inconsistent ones. Useful for representation 
and interpretation of novel patterns? Dealing with 
clutter?

Predictive coding:  suppress lower-level features that 
are consistent with a confident high-level 
interpretation. Reduce metabolic costs, signal new 
unexplained incoming information.

Disambiguation?

perceptual organization reduces 
activity in V1

Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. 
(2002).; Fang, F., Kersten, D., & Murray, S. O. (2008).

...but non-retinotopic voxels are also suppressed (Wit et al., 2012)

Behavioral evidence for top-down reduction of early activity?  Use 
perceptual adaptation--the psychophysicist’s electrode

“predictive coding”
through suppression of consistent 

features at lower levels

Lower area
(V1) Higher area

HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts 
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.
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Lee & Mumford, 2003, JOSA
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Return to the challenge of task flexibility

Humans can not only localize and 
recognize object categories, they can 

• parse, describe and precisely 
segment an image, and lots 
more, such as measure 
attributes and relations, infer 
intent, … 

• rapidly learn new object models 
under difficulty segmentation 
conditions

A. B.

D.

C.

Old	style New	style

• The	“paint	job”

Bringing nature to the lab. Callionima moths on the left show disruptive camouflage patterns. The garment in 
the middle image replicate images of the woodland background. Texture mapping was used by Brady and 
Kersten (2003) to mimic this for the digital embryo on the right. This introduces false positive object 
boundaries, and apparent shape from shading cues.

Virtual morphogenesis
Brady, M. J., & Kersten, D. (2003). 
Bootstrapped learning of novel objects. 
Journal of Vision, 3(6), 413–422.

Brady, M. J., & Kersten, D. (2003). 
Bootstrapped learning of novel objects. 
Journal of Vision, 3(6), 413–422.



How do humans acquire prior knowledge of object classes? There is a 
target object in “plain view” in this figure. Without training, it is 
impossible to detect or draw a line around its boundary.

29

Bootstrapped learning: Learning a 
camouflaged object from camouflaged 
training images

If an observer has to opportunities to see 
colored birds, this could help the 
observer to learn about the forms that 
birds can take. Then at some future time, 
it could use this knowledge to see birds 
whose color does not distinguish it from 
the background, e.g. a different kind of 
bird, or under more difficult viewing 
conditions, such as during the night or 
fog. This is “opportunistic learning”

Opportunistic learning: 

Learning a camouflaged object 
from uncamouflaged training 
images



After training, observers were tested on 
test images in which the objects were 
given new camouflage, and presented 
against new backgrounds.  

All observers were able to learn 
opportunistically, and some were also 
able to learn from the camouflaged 
training images. This figure shows a 
perfect segmentation by an observer 
after training.

Flexibility
Limitations to current recognition algorithms as 

models of biological/human vision?

Humans generalize far beyond 
training data to novel images/
forms

To what extent does human visual flexibility, ability 
to generalize rely on deep generative knowledge?

How deep?

Insights from computer graphics…

Take a look at faces, materials such as hair and fluids, 
and body pose

emotion/intent muscles multiple layers 
of soft tissue

3D rendering 
parameters

deeper

Image

http://www.pauldebevec.com



https://developer.nvidia.com/faceworks

“How to cheat and get away with it?”

Message from computer graphics is as deep as you 
can given processing limitations

General message for human visual 
neuroscience is “deep, but not too deep”.

Faces

See too: Nvidia talk facial expressions

emotion/intent muscles multiple layers 
of soft tissue

3D rendering 
parameters

deeper

image

How deep?

deeper

 3D shape?
image

2D shape approximations?

Material, e.g. sub-
surface scattering?

Appearance 
approximations?

 Illumination? 
Sources, shadows, inter-reflections,..

Hair

hair care products have the highest sale 
volume of all non-food items in the US



What does it take to 
generate realistic hair?

Sasquatch software from www.worley.com

Hair can be…
• wavy, curly, straight, spiky, stiff, buzzed, shaved, parted, neatly-

combed, tamed, long, short, cropped 
• thick, full, lustrous, bushy, coarse, wiry 

• thin, scraggly, fine, baby-fine, wispy, limp, flat, balding, receding  
• black, brunette, brown, chestnut-brown, honey-blond, blond, 

golden-blond, ash-blond, auburn, red, strawberry-blond, gray, 
silver, white, salt-and-pepper 

• permed, dyed, bleached, highlighted, weaved 
• braids, ponytail, pigtails, bun, twist, bob, ringlets, flip, bangs, buzz 
• layered, feathered, chopped, gelled, spiked, slicked down 
• terminal and vellus

Viscous fluids



Body pose, actions
A B

X. Chen and A.L. Yuille. Articulated Pose Estimation with Image-Dependent Preference on Pairwise Relations. NIPS 2014

Toshev, A., & Szegedy, C. (2013). Deeppose: Human pose estimation via deep neural networks. arXiv Preprint arXiv:1312.4659.

http://www.biomotionlab.ca/Demos/BMLwalker.html

global

local

http://astro.temple.edu/~tshipley/ptlt_movies/mlwalk2.mov

how to get from local to global?

Need to understand the critical dimensions that avoid the uncanny 
valley without computations and representations unlikely to exist in 
the brain. I.e. the “right” kind of generative model.

Need to understand how to model statistical regularities in classes of 
natural images. Linear methods are inadequate. 

Need for compositional models, grammars, e.g. “recognition-by-
components”

Current inferential models of human visual recognition are not very 
“deep” in the sense of relying on inductive biases, generative models 
that could allow rapid learning from few samples, the ability to deal 
with almost any image (familiar or not).


